Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
One Health Outlook ; 2(1): 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33169111

RESUMO

BACKGROUND: The second largest Ebola virus disease (EVD) outbreak began in the Democratic Republic of Congo in July 2018 in North Kivu Province. Data suggest the outbreak is not epidemiologically linked to the 2018 outbreak in Equateur Province, and that independent introduction of Ebola virus (EBOV) into humans occurred. We tested for antibodies to ebolaviruses in febrile patients seeking care in North Kivu Province prior to the EVD outbreak. METHODS: Patients were enrolled between May 2017 and April 2018, before the declared start of the outbreak in eastern DRC. Questionnaires were administered to collect demographic and behavioural information to identify risk factors for exposure. Biological samples were evaluated for ebolavirus nucleic acid, and for antibodies to ebolaviruses. Prevalence of exposure was calculated, and demographic factors evaluated for associations with ebolavirus serostatus. RESULTS: Samples were collected and tested from 272 people seeking care in the Rutshuru Health Zone in North Kivu Province. All patients were negative for filoviruses by PCR. Intial screening by indirect ELISA found that 30 people were reactive to EBOV-rGP. Results were supported by detection of ebolavirus reactive linear peptides using the Serochip platform. Differential screening of all reactive serum samples against the rGP of all six ebolaviruses and Marburg virus (MARV) showed that 29 people exhibited the strongest reactivity to EBOV and one to Bombali virus (BOMV), and western blotting confirmed results. Titers ranged from 1:100 to 1:12,800. Although both sexes and all ages tested positive for antibodies, women were significantly more likely to be positive and the majority of positives were in February 2018. CONCLUSIONS: We provide the first documented evidence of exposure to Ebola virus in people in eastern DRC. We detected antibodies to EBOV in 10% of febrile patients seeking healthcare prior to the declaration of the 2018-2020 outbreak, suggesting early cases may have been missed or exposure ocurred without associated illness. We also report the first known detection of antibodies to BOMV, previously detected in bats in West and East Africa, and show that human exposure to BOMV has occurred. Our data suggest human exposure to ebolaviruses may be more frequent and geographically widespread.

2.
Braz J Microbiol ; 50(1): 287-296, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30637652

RESUMO

Equine encephalosis (EE) is an acute, arthropod-borne, noncontagious, febrile disease of equids. The clinical signs of EE are similar to milder forms of African horse sickness (AHS) and the two diseases can be easily confused. The Equine encephalosis virus (EEV) is a distinct virus species within the genus Orbivirus, family Reoviridae, with ten linear segments of dsRNA genome. Seven distinct serotypes of EEV have been recognised on the basis of sequence analyses of Seg-2. The need for differential diagnosis of similar forms of EE and AHS warranted the development of molecular diagnostic methods for specific detection and identification of EEV. We report the development of quantitative real-time RT-PCR assay for detection of any member of the EEV species targeting the highly conserved EEV Seg-9. Similar serotype-specific qRT-PCR assays were designed for each of the seven EEV serotypes targeting genome Seg-2, encoding the serotype determining VP2 protein. These assays were evaluated using different EEV serotypes and other closely related orbiviruses. They were shown to be EEV virus species-specific, or EEV type-specific capable of detecting 1 to 13 copies of viral RNA in clinical samples. The assays failed to detect RNA from closely related orbiviruses, including AHSV and Peruvian horse sickness virus (PHSV) isolates.


Assuntos
Infecções por Arbovirus/veterinária , Doenças dos Cavalos/virologia , Orbivirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Infecções por Arbovirus/diagnóstico , Infecções por Arbovirus/virologia , Doenças dos Cavalos/diagnóstico , Cavalos , Orbivirus/classificação , Orbivirus/genética , Filogenia
3.
Nat Microbiol ; 3(12): 1486, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30410089

RESUMO

In the version of this Article originally published, the bat species for 12 individuals were incorrectly identified in Supplementary Table 1 and 2. After resequencing the MT-CytB and MT-CO1 segments and reviewing the data, the authors have corrected the errors for these 12 animals. In the amended version of the Supplementary Information, Supplementary Tables 1 and 2 have been replaced to include the corrected host species information. None of the 12 bats affected were positive for the Bombali virus, and the conclusions of the study are therefore unchanged.

4.
Nat Microbiol ; 3(10): 1084-1089, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150734

RESUMO

Here we describe the complete genome of a new ebolavirus, Bombali virus (BOMV) detected in free-tailed bats in Sierra Leone (little free-tailed (Chaerephon pumilus) and Angolan free-tailed (Mops condylurus)). The bats were found roosting inside houses, indicating the potential for human transmission. We show that the viral glycoprotein can mediate entry into human cells. However, further studies are required to investigate whether exposure has actually occurred or if BOMV is pathogenic in humans.


Assuntos
Quirópteros/virologia , Ebolavirus/genética , Animais , Linhagem Celular Tumoral , Quirópteros/classificação , Quirópteros/genética , Ebolavirus/classificação , Genoma Viral/genética , Humanos , Filogenia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Carga Viral , Internalização do Vírus
5.
PLoS One ; 11(9): e0163014, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27661614

RESUMO

Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.

6.
Res Vet Sci ; 107: 116-122, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27473984

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is a distinct species within the genus Orbivirus, within the family Reoviridae. The epizootic hemorrhagic disease virus genome comprises ten segments of linear, double stranded (ds) RNA, which are packaged within each virus particle. The EHDV virion has a three layered capsid-structure, generated by four major viral proteins: VP2 and VP5 (outer capsid layer); VP7 (intermediate, core-surface layer) and VP3 (innermost, sub-core layer). Although EHDV infects cattle sporadically, several outbreaks have recently occurred in this species in five Mediterranean countries, indicating a potential threat to the European cattle industry. EHDV is transmitted by biting midges of the genus Culicoides, which can travel long distances through wind-born movements (particularly over water), increasing the potential for viral spread in new areas/countries. Expression systems to generate self-assembled virus like particles (VLPs) by simultaneous expression of the major capsid-proteins, have been established for several viruses (including bluetongue virus). This study has developed expression systems for production of EHDV VLPs, for use as non-infectious antigens in both vaccinology and serology studies, avoiding the risk of genetic reassortment between vaccine and field strains and facilitating large scale antigen production. Genes encoding the four major-capsid proteins of a field strain of EHDV-6, were isolated and cloned into transfer vectors, to generate two recombinant baculoviruses. The expression of these viral genes was assessed in insect cells by monitoring the presence of specific viral mRNAs and by western blotting. Electron microscopy studies confirmed the formation and purification of assembled VLPs.


Assuntos
Proteínas do Capsídeo/fisiologia , Vírus da Doença Hemorrágica Epizoótica/imunologia , Animais , Antígenos Virais , Baculoviridae/genética , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Insetos , Infecções por Reoviridae/veterinária , Proteínas Virais/genética , Vacinas Virais/imunologia , Vírion
7.
PLoS One ; 10(6): e0131257, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121128

RESUMO

Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV 'topotype'. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of 'live' South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies.


Assuntos
Vírus Bluetongue/genética , Bluetongue/epidemiologia , Bluetongue/virologia , Análise de Sequência de DNA , Animais , Linhagem Celular , Genes Virais , Índia/epidemiologia , Epidemiologia Molecular , Filogenia , Proteínas Virais/genética
8.
Viruses ; 7(5): 2185-209, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25928203

RESUMO

The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in 'conserved' Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.


Assuntos
Genoma Viral , Orbivirus/classificação , Orbivirus/genética , RNA Viral/genética , Análise de Sequência de DNA , Carrapatos/virologia , Animais , Análise por Conglomerados , Dados de Sequência Molecular , Orbivirus/isolamento & purificação , Filogenia , Homologia de Sequência
9.
Genome Announc ; 3(2)2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25858823

RESUMO

Southern Indian isolate IND1994/01 of bluetongue virus serotype 2 (BTV-2), from the Orbivirus Reference Collection at the Pirbright Institute (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1994/01), was sequenced. Its genome segment 6 (Seg-6) [encoding VP5(OCP2)] is identical to that of the Indian BTV-1 isolate (IND2003/05), while Seg-5 and Seg-9 are closely related to isolates from South Africa and the United States, respectively.

10.
PLoS One ; 9(10): e108379, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299687

RESUMO

Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively.


Assuntos
Ceratopogonidae/virologia , Genoma Viral/genética , Marsupiais/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Orbivirus/genética , Filogenia , Análise de Sequência/métodos , Proteínas Estruturais Virais/genética
11.
PLoS One ; 8(8): e70779, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015178

RESUMO

The species Corriparta virus (CORV), within the genus Orbivirus, family Reoviridae, currently contains six virus strains: corriparta virus MRM1 (CORV-MRM1); CS0109; V654; V370; Acado virus and Jacareacanga virus. However, lack of neutralization assays, or reference genome sequence data has prevented further analysis of their intra-serogroup/species relationships and identification of individual serotypes. We report whole-genome sequence data for CORV-MRM1, which was isolated in 1960 in Australia. Comparisons of the conserved, polymerase (VP1), sub-core-shell 'T2' and core-surface 'T13' proteins encoded by genome segments 1, 2 and 8 (Seg-1, Seg-2 and Seg-8) respectively, show that this virus groups with the other mosquito borne orbiviruses. However, highest levels of nt/aa sequence identity (75.9%/91.6% in Seg-2/T2: 77.6%/91.7% in Seg-8/T13, respectively) were detected between CORV-MRM1 and California mosquito pool virus (CMPV), an orbivirus isolated in the USA in 1974, showing that they belong to the same virus species. The data presented here identify CMPV as a member of the Corriparta virus species and will facilitate identification of additional CORV isolates, diagnostic assay design and epidemiological studies.


Assuntos
Genoma Viral , Orbivirus/genética , DNA Intergênico/genética , Tipagem de Sequências Multilocus , Orbivirus/classificação , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Proteínas Estruturais Virais/genética
12.
Genome Announc ; 1(5)2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24051311

RESUMO

The genome of NIG1982/10, a Nigerian bluetongue virus serotype 16 (BTV-16) strain, was sequenced (19,193 bp). Comparisons to BTV strains from other areas of the world show that all 10 genome segments of NIG1982/10 are derived from a western lineage (w), indicating that it represents a suitable reference strain of BTV-16w.

13.
J Virol ; 86(18): 10255-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22923810

RESUMO

The entire genome of the reference strain of bluetongue virus (BTV) serotype 16 (strain RSArrrr/16) was sequenced (a total of 23,518 base pairs). The virus was obtained from the Orbivirus Reference Collection (ORC) at IAH, Pirbright, United Kingdom. The virus strain, which was previously provided by the Onderstepoort Veterinary Research Institute in South Africa, was originally isolated from the Indian subcontinent (Hazara, West Pakistan) in 1960. Previous phylogenetic comparisons show that BTV RNA sequences cluster according to the geographic origins of the virus isolate/lineage, identifying distinct BTV topotypes. Sequence comparisons of segments Seg-1 to Seg-10 show that RSArrrr/16 belongs to the major eastern topotype of BTV (BTV-16e) and can be regarded as a reference strain of BTV-16e for phylogenetic and molecular epidemiology studies. All 10 genome segments of RSArrrr/16 group closely with the vaccine strain of BTV-16 (RSAvvvv/16) that was derived from it, as well as those recently published for a Chinese isolate of BTV-16 (>99% nucleotide identity), suggesting a very recent common ancestry for all three viruses.


Assuntos
Vírus Bluetongue/genética , Animais , Bluetongue/virologia , Vírus Bluetongue/classificação , Genoma Viral , Índia , Dados de Sequência Molecular , Filogenia , Sorotipagem
14.
J Virol ; 86(11): 6375-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22570246

RESUMO

All 10 genome segments (Seg-1 to 10-a total of 19,188 bp) were sequenced from a strain of bluetongue virus serotype 3 (BTV-3) from India (strain IND2003/08). Sequence comparisons showed that nine of the genome segments from this virus group with other eastern topotype strains. Genome Seg-2 and Seg-6 group with eastern BTV-3 strains from Japan. However, Seg-5 (the NS1 gene) from IND2003/08 belongs to a western lineage, demonstrating that IND2003/08 is a reassortant between eastern and western topotype bluetongue viruses. This confirms that western BTV strains have been imported and are circulating within the subcontinent.


Assuntos
Vírus Bluetongue/genética , Genoma Viral , RNA Viral/genética , Vírus Reordenados/genética , Análise de Sequência de DNA , Animais , Vírus Bluetongue/isolamento & purificação , Índia , Dados de Sequência Molecular , Filogenia , Vírus Reordenados/isolamento & purificação , Homologia de Sequência
15.
J Virol ; 86(12): 7011-2, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22628397

RESUMO

The full genome sequence (19,177 bp) of an Indian strain (IND1988/02) of bluetongue virus (BTV) serotype 23 was determined. This virus was isolated from a sheep that had been killed during a severe bluetongue outbreak that occurred in Rahuri, Maharashtra State, western India, in 1988. Phylogenetic analyses of these data demonstrate that most of the genome segments from IND1988/02 belong to the major "eastern" BTV topotype. However, genome segment 5 belongs to the major "western" BTV topotype, demonstrating that IND1988/02 is a reassortant. This may help to explain the increased virulence that was seen during this outbreak in 1988. Genome segment 5 of IND1988/02 shows >99% sequence identity with some other BTV isolates from India (e.g., BTV-3 IND2003/08), providing further evidence of the existence and circulation of reassortant strains on the subcontinent.


Assuntos
Vírus Bluetongue/genética , Bluetongue/virologia , Genoma Viral , Vírus Reordenados/genética , Animais , Sequência de Bases , Vírus Bluetongue/classificação , Vírus Bluetongue/isolamento & purificação , Índia , Dados de Sequência Molecular , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Ovinos
16.
J Virol ; 86(9): 5404-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22492927

RESUMO

Bluetongue virus serotype 2 (IND2003/02) was isolated in Tiruneveli City, Tamil Nadu State, India, and is stored in the Orbivirus Reference Collection at the Institute for Animal Health, Pirbright, United Kingdom. The entire genome of this isolate was sequenced, showing that it is composed of a total of 19,203 bp (all 10 genome segments). This is the first report of the entire genome sequence of a western strain of BTV-2 isolated in India, indicating that this virus has been introduced and is circulating in the region. These data will aid in the development of diagnostics and molecular epidemiology studies of BTV-2 in the subcontinent.


Assuntos
Vírus Bluetongue/genética , Genoma Viral , Animais , Vírus Bluetongue/isolamento & purificação , Índia , Anotação de Sequência Molecular , Dados de Sequência Molecular
17.
J Virol ; 86(10): 5967-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22532533

RESUMO

Bluetongue virus type 2, isolated in India in 1982 (IND1982/01), was obtained from the Orbivirus Reference Collection at IAH Pirbright (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1982/01). Full genome sequencing and phylogenetic analyses show that IND1982/01 is a reassortant virus containing genome segments derived from both eastern and western topotypes. These data will help to identify further reassortment events involving this or other virus lineages in the subcontinent.


Assuntos
Vírus Bluetongue/genética , Bluetongue/virologia , Genoma Viral , Recombinação Genética , Animais , Sequência de Bases , Vírus Bluetongue/classificação , Vírus Bluetongue/isolamento & purificação , Índia , Dados de Sequência Molecular , Filogenia , Ruminantes
18.
J Virol ; 86(10): 5971-2, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22532535

RESUMO

Bluetongue virus is the type species of the genus Orbivirus in the family Reoviridae. We report the first complete genome sequence of an isolate (IND2004/01) of bluetongue virus serotype 10 (BTV-10) from Andhra Pradesh, India. This isolate, which is stored in the Orbivirus Reference Collection (ORC) at IAH Pirbright, shows >99% nucleotide identity in all 10 genome segments with a vaccine strain of BTV-10 from the United States.


Assuntos
Vírus Bluetongue/genética , Bluetongue/virologia , Genoma Viral , Sequência de Bases , Vírus Bluetongue/classificação , Vírus Bluetongue/isolamento & purificação , Índia , Dados de Sequência Molecular , Estados Unidos , Vacinas Virais/genética
19.
PLoS One ; 7(2): e32601, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389711

RESUMO

Bluetongue (BT) is an arthropod-borne viral disease, which primarily affects ruminants in tropical and temperate regions of the world. Twenty six bluetongue virus (BTV) serotypes have been recognised worldwide, including nine from Europe and fifteen in the United States. Identification of BTV serotype is important for vaccination programmes and for BTV epidemiology studies. Traditional typing methods (virus isolation and serum or virus neutralisation tests (SNT or VNT)) are slow (taking weeks, depend on availability of reference virus-strains or antisera) and can be inconclusive. Nucleotide sequence analyses and phylogenetic comparisons of genome segment 2 (Seg-2) encoding BTV outer-capsid protein VP2 (the primary determinant of virus serotype) were completed for reference strains of BTV-1 to 26, as well as multiple additional isolates from different geographic and temporal origins. The resulting Seg-2 database has been used to develop rapid (within 24 h) and reliable RT-PCR-based typing assays for each BTV type. Multiple primer-pairs (at least three designed for each serotype) were widely tested, providing an initial identification of serotype by amplification of a cDNA product of the expected size. Serotype was confirmed by sequencing of the cDNA amplicons and phylogenetic comparisons to previously characterised reference strains. The results from RT-PCR and sequencing were in perfect agreement with VNT for reference strains of all 26 BTV serotypes, as well as the field isolates tested. The serotype-specific primers showed no cross-amplification with reference strains of the remaining 25 serotypes, or multiple other isolates of the more closely related heterologous BTV types. The primers and RT-PCR assays developed in this study provide a rapid, sensitive and reliable method for the identification and differentiation of the twenty-six BTV serotypes, and will be updated periodically to maintain their relevance to current BTV distribution and epidemiology (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/rt-pcr-primers.htm).


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sorotipagem/métodos , Animais , Linhagem Celular , Genoma Viral/genética
20.
PLoS One ; 7(3): e31911, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438872

RESUMO

Eubenangee virus has previously been identified as the cause of Tammar sudden death syndrome (TSDS). Eubenangee virus (EUBV), Tilligery virus (TILV), Pata virus (PATAV) and Ngoupe virus (NGOV) are currently all classified within the Eubenangee virus species of the genus Orbivirus, family Reoviridae. Full genome sequencing confirmed that EUBV and TILV (both of which are from Australia) show high levels of aa sequence identity (>92%) in the conserved polymerase VP1(Pol), sub-core VP3(T2) and outer core VP7(T13) proteins, and are therefore appropriately classified within the same virus species. However, they show much lower amino acid (aa) identity levels in their larger outer-capsid protein VP2 (<53%), consistent with membership of two different serotypes - EUBV-1 and EUBV-2 (respectively). In contrast PATAV showed significantly lower levels of aa sequence identity with either EUBV or TILV (with <71% in VP1(Pol) and VP3(T2), and <57% aa identity in VP7(T13)) consistent with membership of a distinct virus species. A proposal has therefore been sent to the Reoviridae Study Group of ICTV to recognise 'Pata virus' as a new Orbivirus species, with the PATAV isolate as serotype 1 (PATAV-1). Amongst the other orbiviruses, PATAV shows closest relationships to Epizootic Haemorrhagic Disease virus (EHDV), with 80.7%, 72.4% and 66.9% aa identity in VP3(T2), VP1(Pol), and VP7(T13) respectively. Although Ngoupe virus was not available for these studies, like PATAV it was isolated in Central Africa, and therefore seems likely to also belong to the new species, possibly as a distinct 'type'. The data presented will facilitate diagnostic assay design and the identification of additional isolates of these viruses.


Assuntos
Orbivirus/classificação , Orbivirus/genética , África Central , Animais , Austrália , Sequência de Bases , Sequência Conservada , Genoma Viral , Vírus da Doença Hemorrágica Epizoótica/classificação , Vírus da Doença Hemorrágica Epizoótica/genética , Macropodidae/virologia , Orbivirus/isolamento & purificação , Orbivirus/patogenicidade , Filogeografia , RNA Viral/genética , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Especificidade da Espécie , Proteínas do Core Viral/genética , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...